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a b s t r a c t

A mixed flexible-rigid multi-body mathematical model is applied to predict the

dynamic performance of a wind turbine system. Since the tower and rotor are both

flexible thin-walled structures, a consistent expression for their deformations is applied,

which employs a successive series of transformations to locate any point on the blade

terms of each flexible body and rigid body are derived for use in the Lagrange approach

to formulate the wind turbine system’s governing equation. The mode shapes are then

obtained from the free vibration solution, while the distributions of dynamic stress and

displacement of the tower and rotor are computed from the forced vibration response

analysis. Using this dynamic model, the influence of the tower’s stiffness on the blade

tip deformation is studied. From the analysis, it is evident that the proposed model not

only inherits the simplicity of the traditional 1-D beam element, but also able to provide

detailed information about the tower and rotor response due to the incorporation of the

flexible thin-walled beam theory.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Wind turbine technology, while gaining more popularity in recent years, is also experiencing many critical challenges
related to loading and size increase, which can hamper further advancement and stifle its expansion. To deal with this
impediment, engineers have attempted to continuously adapt the fundamental wind turbine technology and design.
This evolution is discussed by Quarton in a publication [1] that surveyed the design and analysis of wind turbine during the
last two decades preceding 1998. The paper reviewed the dominant factors driving the design process and evaluated the
state-of-the-art capabilities. In addition, Quarton analyzed the uncertainty areas and likely future developments of
wind turbine design.

There are a number of investigations [2–7] aimed mainly at modeling the dynamic performance of the blade. Even
though numerous mathematical models were applied, the finite element model is by far the most widely used one. These
studies investigated blade deformation, natural modes, effect of turbulence and other relevant dynamic response. There
are also other investigations [8–11] focused primarily on the tower’s dynamic behavior and various aspects of structural
design including optimization of tower shape to improve dynamic performance.

In spite of the above-mentioned work and other studies on wind turbine dynamics, there are surprisingly very few
mathematical modeling efforts that consider the flexibilities of the rotor and tower as well as their dynamic coupling. In a
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Nomenclature

A area of cross section
cc the chord length of the cross section
CL, CD the lift and drag coefficients
dx, dy, dz the components of the rigid translation of d
D, d the external and internal diameters of the

tower
H longitudinal length of the tower
H, H1, H2 elemental shape function vector and its 1st

and 2nd derivatives coefficient vector
ix, iy, iz the components of unit vector i
I second or higher order moment of the area
Jr rotor’s moment of inertia
K kinetic energy
K stiffness matrix of the wind turbine
L distance from the tower axis to the rotor’s

rotation plane
La the Lagrangian function
mn total nacelle mass
Mðw0t0Þ mass matrix of the wind turbine
N number of blades
Nb, Nt number of finite element on each blade and

number of finite element on the tower
q, q0 the deformation state vector and correspond-

ing derivative
Q ðw0t0Þ external force vector of the wind turbine
R distance form cross section to the rotor

coordinate system xryrzr

S first moment of the area
DS displacement along circumference of point p

Tbr transformation matrix from the cross section
coordinate system xbybzb to the rotor coordi-
nate system xryrzr

Tf transformation matrix of the flexible body
deformation

Tn0 transformation matrix from the nacelle co-
ordinate system xnynzn to the wind turbine
inertial coordinate system x0y0z0

Tr rigid transformation matrix
Trn transformation matrix from the rotor coordi-

nate system xryrzr to the nacelle coordinate
system xnynzn

u, v, w beam’s deformation in x1, y1 and z1 axes
U potential energy

V1 the absolute wind velocity
Wa virtual work due to the aerodynamic load
Wc virtual work due to centrifugal force
Wg virtual work due to gravity
Wt virtual work of the moment produced by the

aerodynamic load
w0t0 tower’s most top bending slope
xg, yg, zg the nacelle’s gravity center coordinates

Greek symbols

a blade’s twist angle
b blade’s attack angle
g blade’s pitch angle
ebxx, ebxy, ebxz blade’s linear strains
etxx, etxz tower’s linear strains
exs thin-walled beam’s shear strain
y the rigid rotation angle of the cross section
k warping function
l the tangential angle at point p

x, Z coordinates of point p relative to the cross
section coordinate system

s, t axial stress and shear stress
f flexible body rotation
j rigid rotation angle
o rotor angular velocity

Subscript

0 the inertial system
b the blade
n the nacelle
r the rotor
t the tower

Superscript

e the element

Special functions

� Kronecker product

J. Wang et al. / Journal of Sound and Vibration 329 (2010) 3565–35863566
rare case, Garrad and Quarton [12] used a symbolic computing tool to derive the coupled rotor-tower system equations of
motion and then applied those equations to examine the stability of a simple example. In another study, Stol, Balas and Bir
[13] built a two-bladed wind turbine structural model with seven degrees-of-freedom that includes tower fore-aft
bending, tower lateral bending, tower twist, nacelle yaw, hub teeter and flapwise bending of each blade. The Floquet theory
was then used to extract the modal parameters. In this analysis, the centrifugal and gyroscopic effects were shown to have
a significant effect on wind turbine modes, especially at high rotor speed.

Fairly recently, Larsen and Nielsen [14] studied the nonlinear parametric instability of a wind turbine wings using a two
degrees-of-freedom model. Their model was used to analyze the blade vibrations in the flapwise and edgewise directions.
They computed the combination of amplitudes and frequencies that would lead to instability of the wind turbine.

As the size and capacity of wind turbine increase, structural flexibility becomes a critical concern and earlier lumped
parameter models may be inadequate. In a study to address this concern, Ahlstrom [15] applied a commercial finite
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element software package to develop a flexible structural dynamic model of a wind turbine. The model was employed to
investigate the system dynamic response due to wind load on the blades for a range of blade slenderness ratios and wind
conditions. The analysis concluded that large blade deflections have major influence on the power production and
structural loads.

In another pair of finite element studies, Lee, Hodges and Patil [16,17] constructed a wind turbine model comprising of
both rigid body and flexible body subsystems. The model applied the traditional 1-D finite element to represent the
flexibility of the rotor and tower while the rest of the wind turbine components are assume to be rigid bodies. The system’s
governing equations were obtained by coupling the rigid body equation of motion to the linearized flexible body model of
the tower–rotor subsystem. The resultant system equations of motion were treated using the Floquet theory to extract the
wind turbine dynamic characteristics. Since this model was mainly developed for wind turbine control study, which
already requires high computational efficiency, the structure model was made quite coarse from the viewpoint of
structural dynamics.

All of the prior research studies on the dynamic interaction between the tower and rotor as discussed above adopt
the 1-D beam finite element representation to model the deformed state of both the rotor and the tower. The reason is
because it is simple and requires less computing effort. However, this modeling concept has a serious disadvantage if the
displacements and stresses on the skin panel of the tower and blade are needed. In order to be able to calculate the
panel displacement and stress response, one possible approach is to discretize the skin panel structure using 2-D shell
elements. However, the total degrees-of-freedom will certainly rise significantly, which will in turn increase the
computational cost tremendously. Overcoming this computational limitation is the focus of present study, which will be
described next.

This paper presents an analytical approach to address the limitations of previous wind turbine models in analyzing the
complex dynamic response of tower–blade interactions. The proposed mathematical model that employs a mixed flexible-
rigid multi-body formulation possesses the simplicity of the traditional 1-D beam finite element concept while at the same
time yields detailed response information of the flexible tower and rotor structures. In the proposed approach, two matrix
transformations are defined to relate the rotation and translation coordinates of the flexible elements to the rigid body
motion. Also, a thin-walled structure theory is applied to obtain the displacement of any point in the tower and rotor.
The formulation of the shape function of the 1-D beam finite element along with their first two derivatives with respect to
beam’s axial coordinates is presented. From the displacement equations, the kinetic and potential energy terms of both the
rotor and the tower are derived. The virtual work needed for the derivation of the system equations of motion account for
external loads such as aerodynamic and centrifugal forces on the blade and gravitational effect. The resultant system’s
governing equations are then derived using the Lagrange method. Free vibration analysis is performed to obtain the natural
modes of the coupled tower–rotor system. In addition, the dynamic displacement field and stress distribution in the tower
and rotor subject to constant wind speed are computed from the forced response analysis. The effect of tower stiffness
on blade tip gross displacement is examined. Finally, to avoid unnecessary modeling complications, the materials of the
blade and tower are assumed to be isotropic and homogeneous, and all flexible deformations are considered to be
relatively small.
2. Wind turbine analytical model

2.1. Coordinate transformations

Consider a thin-walled beam as illustrated in Fig. 1. The beam geometry is defined relative to the Cartesian coordinate
system oxyz with its longitudinal x-axis running through the shear center of cross section. An arbitrary cross section
represented by the solid line shown with R as the length distance along the x-axis and rigid rotation angle y is defined
by the coordinate system o1x1y1z1 of the undeformed state. The corresponding deformed position, shown as dashed line,
after undergoing displacements u, v and w along the axes of x1, y1 and z1 is represented by twzZ. During deformation, the
cross section also experiences a rotation f with respect to its longitudinal x1-axis. The angle f denotes the flexible body
rotation. The first-order transformation matrix of the flexible body deformation between o1x1y1z1 and twxZ is given
by [18,19]

Tf ðu,v,w,fÞ ¼

1 v0 w0 u

�v0 1 f v

�w0 f 1 w

0 0 0 1

2
6664

3
7775 (1)

where ( )0=d( )/dx. Here, the translational components in Eq. (1) are set to zero due to the beam small deformation
assumption.

The companion transformation matrix for rigid body motion, which is critical to the proposed formulation, is
considered next. When a coordinate system of a rigid body rotates about a unit vector i(ix,iy,iz) with an angle j and then
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Fig. 1. Undeformed (solid line) and deformed positions of a thin-walled beam structure.

Fig. 2. Kinematics of a cross section of the thin-walled beam structure.
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followed by a translation d(dx,dy,dz), the transformation matrix Tr describing this pair of motion can be defined as [20]

Trðiðix,iy,izÞ,j,dðdx,dy,dzÞÞ ¼

i2x ð1�cosjÞþcosj ixiyð1�cosjÞ�iz sinj ixizð1�cosjÞþ iy sinj dx

ixiyð1�cosjÞþ iz sinj i2y ð1�cosjÞþcosj iyizð1�cosjÞ�ix sinj dy

ixizð1�cosjÞ�iy sinj iyizð1�cosjÞþ ix sinj i2z ð1�cosjÞþcosj dz

0 0 0 1

2
66664

3
77775 (2)

where ix, iy and iz are the components of unit vector i, while dx, dy and dz are the components of translation vector d.
2.2. Kinematics of thin-walled beam cross section

A segment of the cross section of the thin-walled beam structure is illustrated in Fig. 2. In this schematic, a point p on
the wall, which is defined by the distance s along the circumference, is displaced by the circumferential displacement Ds to
a new point p0. At point p, the tangential angle with respect to y1-axis is denoted by l. During the deformation, the cross
sectional shape of the thin-walled structure is assumed to be unaltered. This means that any cross section normal to the
longitudinal axis remains unchanged. Therefore, the displacements of the cross section, namely v and w along the axes of
y1 and z1, respectively, are only functions of x. Furthermore; the thin-walled structure is flexible enough that the effect of
the shear strain exs on the final deformation is small enough to be neglected.
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Based on above conditions, the following relation can be obtained for the shear strain:

exs ¼
@u

@s
þ
@Ds

@x
� 0 (3)

The displacement of point p along the circumference is given by

Ds¼ ðwþxfÞsinlþðv�ZfÞcosl¼w sinlþv coslþkf (4)

where x and Z are the coordinates of position p relative to the cross section coordinate system defined by the axes of y1 and
z1. Substituting Ds from Eq. (4) into Eq. (3) yields

@u

@s
¼�

@Ds

@x
¼�

dv

dx
cosl�

dw

dx
sinlþ

df
dx

k (5)

where k¼ cxZ is the warping function, c is a coefficient and

sinl¼ dZ=ds, cosl¼ dx=ds (6a,b)

Further substitution of Eq. (6) into Eq. (5), multiplying through by ds and then integrating will lead to the displacement of
point p0 as

Dpðu,v,w,f,yÞ ¼
Dx

Dy

Dz

8><
>:

9>=
>;¼

u

v

w

8><
>:

9>=
>;þ

1 0 0

0 cosy �siny
0 siny cosy

2
64

3
75
�xv0�Zw0�cxZf0

�Zf
xf
0

8>>><
>>>:

9>>>=
>>>;

¼

1 0 0 0 0

0 1 0 �Z cosy�x siny x cosy�Z siny
0 0 1 �Z sinyþx cosy x sinyþZ cosy
0 0 0 0 1

2
6664

3
7775

u

v

w

f
1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ

0 �x �Z �cxZ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6664

3
7775

u0

v0

w0

f0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼D1

q

1

� �
þD2

q0

0

� �
(7)

where q¼ fu v w fgT and q0 ¼ fu0 v0 w0 f0gT.

2.3. Thin-walled beam element

In the thin-walled beam element shown in Fig. 3, the x-axis runs through the shear center of the element, and the axes
of y and z are arbitrarily oriented in a plane orthogonal to the x-axis to define a cross section. There are three nodes, labeled
as i�1, i and i+1, which are used to determine the behavior of the element. The nodal displacements are given by u, v and
w along the axes of x, y and z, respectively. A local longitudinal coordinate r is a directed line segment from node i to node
i+1. The deformation pattern of any point along the x-axis can be determined directly by [21]

q¼
X3

i ¼ 1

hiq
e
i ¼Hqe (8)

where superscript e denotes finite element, and h is the elemental shape function for thin-walled beam given by

h1 ¼
1
2 rðr�1Þ, h2 ¼ 1�r2, h3 ¼

1
2rðrþ1Þ (9a2c)
Fig. 3. A thin-walled beam element.
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Based on the above deformation patterns and the assumption that node i is the midpoint of the element along the
longitudinal axis, the first derivative of Eq. (8) with respect to x turns out to be

q0 ¼
@q

@r

@r

@x
¼
@q

@r

@x

@r
¼
X3

i ¼ 1

@hi

@r

X3

j ¼ 1

@hj

@r
xj

1
Aqe

i ¼
X3

i ¼ 1

2

le
@hi

@r

� �
qe

i ¼
X3

i ¼ 1

k1
i qe

i ¼H1qe

,0
@,

(10)

where le is the thin-walled beam element length. Similarly, the second derivative is of the form,

q
00

¼
@2q

@x2
¼
X3

i ¼ 1

2

le

� �2 @2hi

@r2
qe

i ¼
X3

i ¼ 1

k2
i qe

i ¼H2qe (11)

2.4. Rotor modeling

To model the dynamics of the rotor, a set of coordinate systems for the wind turbine as shown in Fig. 4 are employed.
The inertial coordinate system of the wind turbine is denoted by x0y0z0 where the x0 runs vertically through the tower axis
and z0 points in the wind direction. The nacelle and all its internal components are represented by the coordinate system
xnynzn in which xn points forward and zn points upward. The rotor coordinate system with origin at the center of its shaft is
xryrzr , while xbybzb is the coordinate system at a cross section R distance from the origin of the rotor coordinate system
along the blade axis.

Next, a set of coordinate transformations are defined as follows. The transformations from the local cross section
coordinate system xbybzb to the rotor coordinate system xryrzr involve a translation of magnitude R in the negative xb

direction, and followed by a pair of back-to-back 901 rotations about the yb and zb axes. The corresponding transformation
matrix Tbr between the cross section coordinate system and rotor coordinate system can be written as

Tbr ¼ T�1
r ðið0,0,1Þ,p=2,dð0,0,0ÞÞ � T�1

r ðið0,1,0Þ,p=2,dð�R,0,0ÞÞ (12)

The transformation from the rotor coordinate system to the nacelle coordinate system is actually quite simple since it
involves a translation along the negative xr direction of distance L. Hence, the transformation matrix Trn between the rotor
Fig. 4. The various coordinate systems applied in the wind turbine model.
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and nacelle coordinate systems is

Trn ¼ T�1
r ðið0,0,0Þ,0,dð�L,0,0ÞÞ (13)

Lastly, the transformation from the nacelle coordinate system to the wind turbine inertial coordinate system involves a
downward translation of distance H followed by a minus 901 rotation about the yn-axis. This transformation matrix Tn0 is
given by

Tn0 ¼ T�1
r ðið0,1,0Þ,�p=2,dð0,0,�HÞÞ (14)

2.4.1. Kinetic energy of rotor

Before proceeding further to derive the rotor kinetic energy term, the geometrical properties of the blade cross section
are defined as follows:

A¼

Z
A

dA, Sx ¼

Z
A
ZdA, SZ ¼

Z
A
xdA, Ixx ¼

Z
A
Z2 dA, IZZ ¼

Z
A
x2 dA, IxZ ¼

Z
A
xZdA¼

Z
A
ZxdA

IxZZ ¼

Z
A
x2ZdA¼

Z
A
Zx2 dA, IxxZ ¼

Z
A
xZ2 dA¼

Z
A
Z2xdA, Ixxx ¼

Z
A
Z3 dA, IZZZ ¼

Z
A
x3 dA (15a2j)

where A is the area of the cross section, S is the first moment of the area and I is the second or higher order moment of the
area. Then, by applying the previously defined successive transformations involving both translations and rotations, the
position vector of an arbitrary point p on the blades can be expressed within the inertial coordinate system x0y0z0 as

pb ¼ Tf ð0,wt0,0Þ � Tn0 � Trn � Tbr �Dp¼ Tf � Tn0 � Trn � Tbr � D1

qb

1

� �
þD2

q0b
0

� �� �
¼ Tf � B1

qb

1

� �
þB2

q0b
0

� �� �
(16)

where the subscript b associates the variable vector to the blade. Differentiating Eq. (16) with respect to time t gives the
velocity of point p to be

_pb ¼
_Tf � B1

qb

1

� �
þB2

q0b
0

� �� �
þTf � B1

_qb

0

� �
þB2

_q 0b
0

( ) !
(17)

Having the velocity expression above enables one to formulate the kinetic energy of the blade as

Kb ¼

Z
m

_pT
b
_pb dm¼ KqqþKwwþ2Kwq (18a)

Kqq ¼

Z
½ _qT

bðTf B1Þ
T
ðTf B1Þ _qbþ _q

0T
b ðTf B2Þ

T
ðTf B2Þ _q

0

bþ2 � _qT
bðTf B1Þ

T
ðTf B2Þ _q

0

b�dmb

¼
XN

j ¼ 1

1

2
rb

XNb

i ¼ 1

lejiq
eT
bji

Z 1

�1
HTH�

ð1þw02t0ÞAji 0 0 0

ð1þw02t0ÞAji 0 �ð1þw02t0ÞðSZji sinyjiþSxji cosyjiÞ

Sym: Aji SZjicosyji � Sxjisinyji

Ixxji½ð1þw02t0Þ cos2 yjiþsin2 yji�þ IZZji½ð1þw02t0Þsin2 yjiþcos2 yji�þ IxZjiw
02
t0 sin 2yji

2
666664

3
777775dr

0
BBBBB@

1
CCCCCAqe

bji

þ
1

2
rb

XNb

i ¼ 1

lejiq
eT
bji

Z 1

�1
HT

1H1 �

0 0 0 0

ð1þw02t0ÞIZZji ð1�w02t0ÞIxZji ð1�w02t0ÞcIxZZji

Sym: ð1þw02t0ÞIxxji ð1þw02t0ÞcIxxZji

ð1þw02t0Þc
2I2
xZji

2
666664

3
777775dr

0
BBBBB@

1
CCCCCAqe

bji

þ
1

2
rb

XNb

i ¼ 1

lejiq
eT
bji

Z 1

�1
HT

1H�

0 �ð1�w02t0ÞSZji �ð1þw02t0ÞSxji �ð1þw02t0ÞcIxZji

0 2w02t0SZji 0 ð1�w02t0ÞcIxZZji

0 0 0 ð1þw02t0ÞcIxxZji

0 2w0t0ðIxZji cosyjiþ IZZjisinyjiÞ 0 ð1þw02t0Þc
2I2
xZji

2
666664

3
777775dr

0
BBBBB@

1
CCCCCAqe

bji

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(18b)

Kww ¼

Z
_T

T

f � B1

qb

1

� �
þB2

q0b
0

� �� �T

� B1

qb

1

� �
þB2

q0b
0

� �
b

 !
� _Tf dmb � _w 02t0rbJr (18c)

Kwq ¼

Z
B1

qb

1

� �
þB2

q0b
0

� �� �T

_T
T

f � Tf � B1

qb

1

� �
þB2

q0b
0

� �� �
dmb

�
XN

j ¼ 1

1

2
_w 0t0

XNb

i ¼ 1

lejirb

Z 1

�1
H�

�LAji

ðRiþHÞAji

0

ðRiþHÞðSxji cosyjiþSZji sinyjiÞ

2
66664

3
77775

T0
BBBB@

1
CCCCAdr _qe

bji

0
BBBB@

1
CCCCA (18d)
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where the symbol � denotes Kronecker product, N is the number of blade and Nb is the number of finite element on each
blade.

2.4.2. Potential energy of rotor

Neglecting rigid body motion, the blade deformation relative to the inertial coordinate system can be written as

Dxb

Dyb

Dzb

8><
>:

9>=
>;¼

1 w0t0 0 �w0t0ðZ cosyþx sinyÞ
0 0 �1 Z siny�x cosy
�w0t0 1 0 �Z cosy�x siny

2
64

3
75

u

v

w

f

8>>>><
>>>>:

9>>>>=
>>>>;
þ

0 �x �Z �cxZ
0 0 0 0

0 w0t0x w0t0Z w0t0cxZ

2
64

3
75

u0

v0

w0

f0

8>>>><
>>>>:

9>>>>=
>>>>;

¼

S11

S12

S13

8><
>:

9>=
>;qbþ

S21

S22

S23

8><
>:

9>=
>;q0b (19a)

Assuming small deformation, the linear strain theory can be developed in the following manner:

ebxx ¼
@Dxb

@x
¼ S11q0bþS21q

00

b (19b)

ebxy ¼
@Dxb

@x
þ
@Dyb

@x
¼
@S11

@x
qbþ

@S21

@x
þS12

� �
q0b (19c)

ebxz ¼
@Dxb

@Z
þ
@Dzb

@x
¼
@S11

@Z
qbþ

@S21

@Z
þS13

� �
q0bþS23q

00

b (19d)

Using Eqs. (19a–d), the potential energy of the blade can be formulated as

Ub ¼

Z
V
ðEbeT

bxxebxxþGbeT
bxyebxyþGbeT

bxzebxzÞdV ¼ qT
b

Z
V

Gb
@ST

11

@x
@S11

@x
þ
@ST

11

@Z
@S11

@Z

 !
dVqb

þq0Tb

Z
V

EbST
11S11þGb

@S21

@x
þS12

� �T @S21

@x
þS12

� �
þGb

@S21

@Z
þS13

� �T @S21

@Z
þS13

� �" #
dVq0b

þq
00T
b

Z
V
½EbST

21S21þGST
23S23�dVq

00

bþqT
b

Z
V

2G
@ST

11
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where Eb and Gb are the blade elastic modulus and blade shear elastic modulus, respectively. Since the blade potential
energy equation cannot be easily differentiated directly, it is necessary to utilize the thin-walled beam element defined in
Eqs. (8)–(11) to formulate an alternate form of the potential energy,
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2.5. Tower analytical model

In contrast to other subsystems, the tower has a reasonably simple geometrical shape. The tower is a welded steel shell
that is composed of stacked cylindrical and conical shell segments. The loads acting on the tower are contributed by the
moments induced by the wind thrust force and the gravitational effect of subsystems the tower support. Also, it may be
noted that the direct gravitational force on the tower is very small and is not expected to affect the deformation
significantly. Hence, it is omitted to avoid further complications in the system governing equations. The tower has only one
global degree-of-freedom wt to represent its fore-aft movement.

Similar to the rotor discussion above, before proceeding to further derivation, the geometrical properties of the tower
cross section are defined as

At ¼ pðD2�d2Þ=4, Itxx ¼ pðD4�d4Þ=64 (22a,b)

where D and d are the external and internal diameters of the tower, respectively. These properties will be employed in the
subsequent formulation of the tower dynamic model.

From Eq. (1) describing the transformation matrix for the flexible deformation of the thin-walled beam, the
displacement of an arbitrary point on the tower neglecting warping effect can be formulated as

pt ¼
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where subscript t refer to the tower subsystem. Differentiating the above equation with respect to time t yields the velocity
of the point,
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where rt is the material density of the tower, Nt is the number of finite element on the tower and let is the length of tower
finite element.

The potential energy formulation is presented next. From the tower deformation model presented earlier, the derivation
of potential energy of tower is reasonably straightforward. First, consider the strain in the tower structure given by

etxx ¼
@Dxt

@x
¼ q0tZt , etxz ¼

@Dxt

@Zt

þ
@Dzt

@xt
¼ qt (26a,b)

From the above strain equations, the potential energy of the tower can be written as
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where Et and Gt are tower and blade shear elastic modulus, respectively.

2.6. Nacelle analytical model

In addition to the kinetic energy terms for the blades and tower, the other parts are also significant sources of kinetic
energy including nacelle, hub, shafts, gearbox and generator. Those components are regarded as rigid bodies and their
mass effects are integrated into the mass of nacelle. Assuming the total nacelle mass is mn and center of gravity is CN=(xg, 0,
zg), the displacement of the nacelle centroid relative to the inertial coordinate system can be written as
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Differentiating the above equation with respect to time t yields the velocity of the nacelle centroid as
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Similar to earlier kinetic energy derivations, using the above velocity expression, the kinetic energy contributed by the
nacelle housing and all its internal components can be shown to be

Kn ¼

Z
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n
_pn dm¼mn _w

02
t0½x

2
gþðzgþHÞ2� (30)

2.7. Virtual work of external forces

In the following three sub-sections, the virtual work expressions due to external forces including wind force
(aerodynamic loads), centrifugal force and gravity are formulated. The equations for virtual work are needed in the
Lagrange method to derive the forcing functions used in the subsequent forced response analysis.

2.7.1. Wind force

The aerodynamic forces exerted on the cross section shown in Fig. 5 can be expressed as

dP¼ 1
2 raCLccV2

r dxb, dT ¼ 1
2raCDccV2

r dxb (31a,b)

where dP and dT are the lift and drag forces, respectively, CL and CD are the lift and drag coefficients, respectively, cc is the
chord length of the cross section, ra is the air density and Vr is the relative wind velocity given by

V2
r ¼ V2

1þðRoÞ
2 (32)

where V1 is the absolute wind velocity. Note that the aerodynamic force formulation above ignores the effect of pitching
moment due to the fact that it is small in magnitude comparing with other aerodynamic components. Since the
displacement vector of the center of an arbitrary cross section is

Dpbc ¼

Dxbc

Dybc

Dzbc
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>;¼
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w
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>; (33)

and the aerodynamic force vector acting on the blade is

dFa ¼ f0 dP dTgT (34)
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Fig. 5. Distribution of the aerodynamic forces.
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the virtual work due to the aerodynamic loads is given by
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It follows that the virtual work of the moment produced by aerodynamic forces on the tower is
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2.7.2. Centrifugal force

It is assumed that the stress caused by the centrifugal force due to the rotation of the blades is distributed uniformly
within an arbitrary cross section of the blade. This is a reasonable assumption because all the points on the cross section
are about the same distance from the center of blade rotation. Therefore, the virtual work due to centrifugal force can be
written as
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At the middle expression, that is the integral included in parenthesis, is the mass of the blade section from R to Lb, s is local
coordinates, u is the axial displacement, and Lb is total length of the blade.

2.7.3. Gravity force

Gravity effect can also be a critical factor that needs special attention, especially for large wind turbine structure. Here,
the gravity forces on the rotor and the nacelle and its internal components are considered in computing the virtual work
due to gravity. The gravity force on the tower is neglected for obvious reasons mentioned earlier. Hence, the virtual work
due to gravity can be written as

Wg ¼N �mbgLw0t0þmngxgw0t0 (38)

where mb is a single blade’s mass. Next, the system governing equations are derived.

2.8. Governing equations

The Lagrange’s equations of motion for the wind turbine system of interest is given by

d

dt

@La

@ _q

� �
�
@La

@q
¼Q (39)
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where La=Kb+Kn+Kt�Ub�Ut is the Lagrangian function. Substitution of the Lagrangian into Lagrange’s equation above
directly yields

d

dt

@ðKbþKnþKtÞ

@ _q
þ
@ðUbþUtÞ

@q
¼
@ðWaþWtþWcþWgÞ

@q
(40)

Rewriting the above governing equation into a more conventional form

Mðw0t0Þ €qþKq¼Q ðw0t0Þ (41)

where Mðw0t0Þ is the mass matrix and Q ðw0t0Þ is the external force vector acting on the system, which are all a function of
the bending slope w0t0 of tower most top point. Also, K is stiffness matrix. The tower displacement vector is
qt ¼ fw

0
t1 w0t2 � � � w0tðnt�1Þ w0t0g

T and nt is the node number on the tower. The blade displacement vector is qb ¼

fqb1 qb2 � � � qbnb
gT and nb is the node number on the blade having the displacement components given by

qbi ¼ fui vi wi fig
T. The system displacement vector q is the sum of tower displacement vector qt and blade displacement

vector qb, that is q¼ fqt qb1 � � � qbNg
T. Note that the expressions for Mðw0t0Þ, K and Q ðw0t0Þ are not shown explicitly here

since they are too large to be practically included in this paper. Their size is (148N+61)� (48N+61) for a blade with
37 nodes and 18 elements and the tower with 61 nodes and 30 elements.

3. Numerical example

A horizontal-axis wind turbine system rated at 645 kW is chosen as the numerical example. Its rotor runs upwind of the
tower and consists of two NREL S809 blades of length 21.3360 m each. The design parameters of the wind turbine example
are presented in Table 1. The geometric parameters and material properties of the discretized blade and tower models
constructed from thin-walled finite elements are given in Tables A1 and A2 in Appendix A. The manner in which the lift
and drag coefficients of NREL S809 vary with angle of attack is available in Ref. [21].

3.1. Free vibration analysis

In the free vibration analysis, also known as modal analysis, the natural frequencies and mode shapes of the wind
turbine system are computed. The natural modes are considered the free response of the system at the corresponding
natural frequencies. The problem is setup by letting the external force vector to be zero, that is Q ðw0t0Þ ¼ 0, in the system
governing equation,

Mðw0t0Þ €qþKq¼ 0 (42)

The above equation is in fact an eigenvalue problem that can be written as

KU¼Mðw0t0ÞUK (43)

where the columns in U are the mode shapes and K is a diagonal matrix of the corresponding natural frequency squares.
Since the mass matrix Mðw0t0Þ is a function of tower most top bending slope denoted by w0t0, Eq. (43) can be analyzed given
a specific value of w0t0. The results of the dominant natural modes for w0t0 =0, 0.1, 0.2 are presented in Table 2. Other natural
frequencies are not listed explicitly because their contributions to the forced responses are quite small. From the tabulated
results, it is obvious that the tower top bending slope w0t0 has only a slight influence on the natural frequencies
of the tower. This is possibly because only the tower fore-aft bending is represented within the proposed dynamic model.
Table 1
Design parameters used in the wind turbine numerical model.

Parameters Descriptions Values

mn Mass of the nacelle 23,228 kg

[xg yg zg] Center of gravity of the nacelle [0.402 0 0] m

L Distance from the tower axis to the rotor’s rotation plane 3.867 m

H Longitudinal length of the tower 34.862 m

g Blade pitch angle 151

o Rotor angular velocity 26.8 r/min

VN Wind velocity 15 m/s

Eb Modulus of elasticity of blade 1.7�109 Pa

Et Modulus of elasticity of tower 2.0�1011 Pa

Gb Shear modulus of blade 7.08�109 Pa

Gt Shear modulus of tower 7.75�1010 Pa

rb Density of blade 2540 kg/m3

rt Density of tower 7870 kg/m3

rb Density of air 1.293 kg/m3
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Table 2
Dominant natural frequencies and corresponding mode shapes at different tower bending slope.

Natural frequency (Hz) Mode shape description

w0t0 ¼ 0 w0t0 ¼ 0:1 w0t0 ¼ 0:2

1.67 1.67 2.16 1st tower bending (with nacelle)

56.32 54.50 45.18 1st rotor anti-symmetrical flap bending

56.54 54.78 45.36 1st rotor symmetrical flap bending

67.31 64.15 58.69 1st rotor anti-symmetrical edge bending

67.34 64.21 58.77 1st rotor symmetrical edge bending

158.72 155.93 149.56 2nd rotor anti-symmetrical flap bending

158.94 156.01 149.87 2nd rotor symmetrical flap bending

190.23 196.17 221.31 2nd rotor anti-symmetrical edge bending

190.56 196.29 221.40 2nd rotor symmetrical edge bending

268.69 294.03 256.44 3rd rotor symmetrical flap bending

724.63 764.24 782.66 2nd tower bending (with nacelle)

Fig. 6. Rotor’s first two symmetrical flap bending mode shapes: (a) 1st flap bending at 56.54 Hz; (b) 2nd flap bending at 158.94 Hz.
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Also, the tower bending is strongly coupled with the rotor flap bending but is independent of rotor edge bending.
Another interesting observation presented in Table 2 is that first and second tower frequencies are quite far apart.
The reason is because they are not just the natural frequencies for the tower structure only, but also the natural frequencies
for the combined tower and nacelle. This is due to the fact that the nacelle has no independent degrees of freedom,
and its kinetic energy is calculated with respect to the tower’s top coordinate wt0. Here, the behavior of the tower
is much like that of a vertical hollow beam with a heavy lumped mass at the head. Selected mode shapes of tower,
rotor and their coupling are illustrated more clearly in Figs. 6–10. Note that in all subsequent display of analysis results,
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Fig. 7. Rotor’s first two anti-symmetrical flap bending mode shapes: (a) 1st flap bending at 56.32 Hz; (b) 2nd flap bending at 158.72 Hz.
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rotor is assumed to be in the vertical position even though the formulation does account for the effect of orbital motion of
the rotor.

Fig. 6 illustrates the rotor’s first two flap bending mode shapes where the two rotor blades deform symmetrically in the
same manner. On the other hand, Fig. 7 shows the rotor blades deform in an anti-symmetrically manner. Owing to the fact
that the external excitations from the wind effect will be most intense at the low frequency range, these first set of rotor’s
symmetrical/anti-symmetrical flap mode shapes will have the highest probability of occurrence.

Figs. 8 and 9 illustrate the rotor’s first two edge bending mode shapes. In contrast to its flap bending mode shapes, the
rotor edge bending mode shapes are uncoupled from the tower deformation because the tower is assumed to possess no
motion in the lateral bending direction.

Fig. 10 gives the first two mode shapes of the tower. The tower is composed of stacked cylindrical and conical
shell segment with varying inner diameter and thickness. Also, its bottom part has the largest inner diameter and
the top contains the thickest shell segment. Hence, the middle part of the tower has the weakest area moment as
presented in Table A2 and hence the largest deflection at its second bending mode shape. To make the middle of
the tower absorb most potential energy is a sensible design strategy because the root of the tower suffers largest
bending moment and the slope of the tower top has a significant effect on the displacement of the blade as it is
demonstrated later. Since the cross section material property of the tower is much stiffer than that of the rotor,
and the blade modulus of elasticity is only nearly 1 percent of the tower one, it is expected, as shown in these
results, that the natural frequencies of the rotor is much lower than that of the tower except for the tower’s first natural
frequency. Accordingly, at least in this specific design, there is no coupling of mode shapes found between the rotor
and tower.

It is also interested to see that the matching pairs of symmetrical and anti-symmetrical rotor natural frequencies are
almost the same. For flap bending type modes, the symmetric ones will more likely be excited during operation because
the deformations of the blades along the line of the wind path are in phase. On the other hand, for the edge bending type,
the anti-symmetric modes will more likely be excited because the deformations of the blades along the tangential
direction (related to blade rotation) are in phase. Therefore, in the design of the system, it is probably more important to
focus on treating the symmetric flap modes and anti-symmetric edge modes.
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Fig. 8. Rotor’s first two symmetrical edge bending mode shapes: (a) 1st edge bending at 67.34 Hz; (b) 2nd edge bending at 190.56 Hz.
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3.2. Dynamic stress under constant wind speed

The dynamic stress distributions on the rotor and tower due to wind speed of 15 m/s that corresponds to rotor angular
velocity of 26.8 rev/min are analyzed next to demonstrate the capability of forced vibration response model. The proposed
governing Eq. (41) is in fact a nonlinear partial differential equation. The nonlinearity is contributed by the non-constant
mass matrix Mðw0t0Þand external force vector Q ðw0t0Þ where the variable w0t0 is a component of vector q. Therefore, it is
impractical to obtain a closed form solution. Here, in analysis, the Newmark numerical integration method is applied. The
detailed description of this numerical approach can be found in Refs. [22,23]. The result of applying the proposed
numerical method is discussed next.

The dynamic stress expression on the blade and tower can be written, respectively, as
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In the above pair of equations, once the dynamic response of the wind turbine structure is computed, the results
can be used to compute the dynamic stress distributions. The results when the blades vertically oriented are discussed
next.

Fig. 11 shows the distribution of the rotor axial stress rbxx and the tower axial stress rtxx. As expected, the axial stress
increases gradually from the blade tip to its root and reaches its highest value at the root of the blade since it is mainly
subjected to the centrifugal force and bending excitation. To illustrate the deformation state of the tower more clearly, the
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Fig. 9. Rotor’s first two anti-symmetrical edge bending mode shapes: (a) 1st edge bending at 67.31 Hz; (b) 2nd edge bending at 190.23 Hz.
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displacement of the tower is exaggerated 100 times. The bending of the tower, acting like a giant vertical cantilever beam,
is principally caused by the thrust force from the rotor. Thus, it is obvious that the tower front half section endures traction
tension, while the tower rear half section experiences pressure tension (not shown). Also, the lower the tower, the higher
the tension.

Fig. 12 illustrates the distribution of the rotor shear stress sbxy. Since the tower is assumed to possess no flexibility in the
y-axis direction, the tower shear stress stxy does not exist. Furthermore, the rotating blade acts like a clamped beam with a
distributed force along the axial direction due to the impact from the wind. As a result, the blade experiences the highest
shear force at the root, which leads to the maximum shear stress sbxy at the same location.

Fig. 13 presents the distributions of the rotor shear sbxz and the tower shear stress stxz. The shear stress sbxz has a similar
distribution as the shear stress sbxy for the same reason described above. The tower shear stress stxz is the same at the
circumference of a cross section of the tower and varies with the latitude of the tower. The least shear stress occurs at the
root of the tower where the cross sectional area is greatest.
3.3. Coupled blade–tower dynamic response

The forced response analysis shows that the tower property has a significant influence on the dynamical behavior of the
rotor. One can observed from Eq. (16) that the displacement of a point on the rotor is amplified because of the bending
deformation of the tower. Fig. 14 shows the comparison of the influence of the tower stiffness on the rotor tip dynamic
displacement. The change of the tower’s physical property is listed in Table 3. Tower I is a typical one with varying
diameter and thickness, tower II is similar to tower I but with an average skin thickness 0.0182 m, and tower III possesses
only 80 percent of the diameters of that of tower II. Within Fig. 14, solid line is used for tower I, dashed line for tower II and
dotted line for tower III responses. It is clear that the dynamical performance of towers I and II have no fundamental
difference when comparing the rotor tip displacement. However, tower I saves around 5 percent materials. When the
diameter of tower III reduces to 80 percent to that of tower II, the dynamic displacements of the rotor tip are nearly
doubled.

Also observed in Fig. 14, due to the deformation coupling between the blade and tower, the blade’s tip dynamic
displacements in the vertical and fore-aft directions vary temporarily in a very similar way. Their primary vibration
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Fig. 10. Tower’s first two bending mode shapes: (a) 1st bending at 1.67 Hz; (b) 2nd bending at 724.63 Hz.

Fig. 11. Distributions of the rotor axial stress sbxx and the tower axial stress stxx .
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Fig. 13. Distributions of the rotor shear stress sbxz and tower shear stress stxz .

Fig. 12. Distributions of the rotor shear stress sbxy .
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Fig. 14. The blade tip displacement of tower I (solid line), tower II (dashed line) and tower III (dotted line). (a) Blade tip displacement along vertical

direction; (b) blade tip displacement along lateral direction; (c) blade tip displacement along fore-aft direction.

Table 3
Design parameters for towers I, II and III.

x (m) Tower I Tower II Tower III

Diameter (m) Thickness (m) Diameter (m) Thickness (m) Diameter (m) Thickness (m)

0.000 4.267 0.0142 4.267 0.0182 3.4136 0.0182

2.294 3.734 0.0142 3.734 0.0182 2.9872 0.0182

6.867 2.692 0.0207 2.692 0.0182 2.1536 0.0182

9.145 2.134 0.0239 2.134 0.0182 1.7072 0.0182

11.481 2.134 0.0239 2.134 0.0182 1.7072 0.0182

14.986 2.134 0.0239 2.134 0.0182 1.7072 0.0182

17.909 2.134 0.0157 2.134 0.0182 1.7072 0.0182

21.417 2.134 0.0157 2.134 0.0182 1.7072 0.0182

24.339 2.134 0.0157 2.134 0.0182 1.7072 0.0182

27.248 2.134 0.0104 2.134 0.0182 1.7072 0.0182

30.727 2.134 0.0104 2.134 0.0182 1.7072 0.0182

33.664 2.134 0.0239 2.134 0.0182 1.7072 0.0182

34.862 2.134 0.0239 2.134 0.0182 1.7072 0.0182
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frequency is about 0.167 Hz that corresponds exactly to the natural frequency of the first tower bending mode. This result
clearly demonstrates that the tower’s deformation has considerable impact on the blade’s dynamic displacement. Hence,
it is desirable that the tower structure is designed with sufficient strength and rigidity.

4. Conclusions

This study proposes a mixed flexible-rigid multi-body dynamic model to predict the deformation state and dynamic
stress distributions of a wind turbine system. The proposed formulation possesses the following features and
enhancements over previous models.
(1)
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The proposed analytical model employs the thin-walled beam theory that is superior to the traditional 1-D beam
finite element when applied to compute the dynamic behavior of wind turbine. This is because the proposed
formulation can, not only provide significant amount of detailed response information on the flexible part of the
system, namely the blade and tower structures, but also inherits the simplicity of the 1-D beam finite element
modeling concept.
(2)
 Due to the combination of centrifugal force and aerodynamic force, the blade’s maximum stress occurs at the root. The
tower is mainly subjected to the thrust force from the rotor and acts like a clamped cantilever beam. The fact that both
blade and tower are typical slender structure makes the dynamical behavior of the wind turbine system depicts
significant first-order mode shape character.
(3)
 The stiffness of the tower structure has a significant impact on the dynamical behavior of overall wind turbine system.
The flexibility of the tower accentuates the dynamic displacement of the blade greatly. That is one of the reasons
modern wind turbine must be designed with strong and rigid tower. However, to minimize the use of extraneous
materials, tower with varying cross section should be used.
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Appendix A

The geometric parameters and material properties of the discretized blade and tower models constructed from thin-
walled finite elements are given in Tables A1 and A2, respectively.
e A1
ical properties of the blade.

de

mber

xb (m) Twist a
(deg)

Chord

cc (m)

A�10�1

(m2)

Sy�10�2

(m3)

Iyy�10�2

(m4)

Izz�10�2

(m4)

Iyz�10�4

(m4)

Iyyz�10�4

(m5)

Iyzz�10�4

(m5)

Iyyy�10�2

(m5)

Izzz�10�6

(m5)

0 0 0.88 0 1.18 1.18 0 0 �5.45 �0.16 0

0.6905 0 2.19 �1.11 2.30 1.32 0 0 �5.45 �0.16 0

1.3810 0 0.6 2.90 �2.62 3.32 1.39 0 0 �5.45 �0.16 0

1.6050 3.42 1.171 2.99 �3.07 3.56 1.38 �1.77 1.27 �1.09 �1.07 �1.25

1.8290 3.37 1.196 2.99 �3.47 3.74 1.35 �1.89 1.38 �1.18 �1.16 �1.36

2.1335 3.31 1.231 2.88 �3.90 3.85 1.29 �2.06 1.55 �1.33 �1.31 �1.52

2.4380 3.27 1.268 2.69 �4.19 3.71 1.19 �2.25 1.75 �1.50 �1.47 �1.71

3.0475 3.18 1.341 2.30 �4.54 3.61 1.00 �2.67 2.16 �1.87 �1.84 �2.14

3.6570 3.08 1.411 2.03 �4.83 3.76 0.83 �3.11 2.68 �2.29 �2.26 �2.62

4.2670 2.98 1.478 1.92 �5.33 4.00 0.73 �3.57 3.23 �2.77 �2.72 �3.16

4.8770 2.88 1.555 1.89 �5.93 4.12 0.66 �4.16 3.95 �3.38 �3.33 �3.87

5.4865 2.79 1.643 1.82 �6.41 4.02 0.58 �4.90 4.92 �4.22 �4.15 �4.82

6.0960 2.69 1.699 1.72 �6.53 3.67 0.50 �5.42 5.63 �4.82 �4.74 �5.51

6.7310 2.57 1.685 1.62 �6.14 3.27 0.43 �5.29 5.44 �4.66 �4.58 �5.33

7.3660 2.45 1.637 1.52 �5.64 3.03 0.38 �4.85 4.85 �4.16 �4.08 �4.75

8.0010 2.33 1.603 1.45 �5.43 2.79 0.33 �4.55 4.46 �3.82 �3.76 �4.37

8.6360 2.21 1.575 1.37 �5.18 2.38 0.29 �4.32 4.16 �3.56 �3.50 �4.07

9.2710 2.06 1.537 1.26 �4.56 1.98 0.25 �4.02 3.77 �3.23 �3.18 �3.70

9.9060 1.91 1.493 1.15 �3.93 1.77 0.21 �3.69 3.37 �2.88 �2.83 �3.30

10.541 1.77 1.452 1.08 �3.65 1.77 0.18 �3.39 3.01 �2.57 �2.53 �2.95

11.176 1.61 1.412 1.02 �3.44 1.62 0.15 �3.11 2.69 �2.30 �2.26 �2.63
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Table A2
Physical properties of the tower.

Node number xt (m) d (m) D (m) At (m2) Iyyt (m4) Node number xt (m) d (m) D (m) At (m2) Iyyt (m4)

1 0.00 4.267 4.295 0.191 0.437 31 17.43 2.134 2.168 0.115 0.066

2 0.58 4.132 4.160 0.185 0.395 32 18.01 2.134 2.165 0.106 0.061

3 1.16 3.997 4.025 0.178 0.359 33 18.59 2.134 2.165 0.106 0.061

4 1.74 3.862 3.890 0.172 0.324 34 19.17 2.134 2.165 0.106 0.061

5 2.32 3.727 3.755 0.164 0.292 35 19.75 2.134 2.165 0.106 0.061

6 2.90 3.594 3.625 0.170 0.278 36 20.33 2.134 2.165 0.106 0.061

7 3.48 3.462 3.494 0.173 0.262 37 20.91 2.134 2.165 0.106 0.061

8 4.06 3.330 3.363 0.175 0.246 38 21.49 2.134 2.165 0.106 0.061

9 4.64 3.196 3.232 0.177 0.229 39 22.07 2.134 2.165 0.106 0.061

10 5.22 3.065 3.102 0.178 0.211 40 22.66 2.134 2.165 0.106 0.061

11 5.81 2.932 2.971 0.178 0.193 41 23.24 2.134 2.165 0.106 0.061

12 6.39 2.800 2.840 0.177 0.176 42 23.82 2.134 2.165 0.106 0.061

13 6.97 2.666 2.708 0.176 0.158 43 24.40 2.134 2.165 0.106 0.060

14 7.55 2.523 2.567 0.173 0.140 44 24.98 2.134 2.163 0.105 0.056

15 8.13 2.381 2.462 0.169 0.122 45 25.56 2.134 2.161 0.098 0.052

16 8.71 2.239 2.285 0.165 0.106 46 26.14 2.134 2.159 0.090 0.048

17 9.29 2.134 2.182 0.162 0.094 47 26.72 2.134 2.157 0.083 0.044

18 9.87 2.134 2.182 0.162 0.094 48 27.30 2.134 2.155 0.076 0.040

19 10.45 2.134 2.182 0.162 0.094 49 27.88 2.134 2.155 0.070 0.040

20 11.03 2.134 2.182 0.162 0.094 50 28.47 2.134 2.155 0.070 0.040

21 11.62 2.134 2.182 0.162 0.094 51 29.05 2.134 2.155 0.070 0.040

22 12.20 2.134 2.182 0.162 0.094 52 29.63 2.134 2.155 0.070 0.040

23 12.78 2.134 2.182 0.162 0.094 53 30.21 2.134 2.155 0.070 0.040

24 13.36 2.134 2.182 0.162 0.094 54 30.79 2.134 2.155 0.072 0.041

25 13.94 2.134 2.182 0.162 0.094 55 31.37 2.134 2.161 0.090 0.052

26 14.52 2.134 2.182 0.162 0.094 56 31.95 2.134 2.166 0.108 0.062

27 15.10 2.134 2.181 0.159 0.093 57 32.53 2.134 2.171 0.126 0.073

28 15.68 2.134 2.178 0.148 0.086 58 33.11 2.134 2.177 0.144 0.084

29 16.26 2.134 2.175 0.137 0.079 59 33.69 2.134 2.182 0.162 0.094

30 16.85 2.134 2.171 0.126 0.073 60 34.28 2.134 2.182 0.162 0.094

61 34.86 2.134 2.182 0.162 0.094

Table A1 (continued )

Node

number

xb (m) Twist a
(deg)

Chord

cc (m)

A�10�1

(m2)

Sy�10�2

(m3)

Iyy�10�2

(m4)

Izz�10�2

(m4)

Iyz�10�4

(m4)

Iyyz�10�4

(m5)

Iyzz�10�4

(m5)

Iyyy�10�2

(m5)

Izzz�10�6

(m5)

22 11.811 1.43 1.372 0.93 �3.00 1.36 0.13 �2.85 2.39 �2.05 �2.01 �2.34

23 12.446 1.24 1.331 0.84 �2.53 1.11 0.10 �2.61 2.12 �1.82 �1.79 �2.08

24 13.081 1.06 1.291 0.77 �2.29 0.96 0.08 �2.37 1.87 �1.61 �1.58 �1.84

25 13.716 0.86 1.250 0.71 �2.11 0.85 0.07 �2.16 1.65 �1.41 �1.39 �1.61

26 14.351 0.63 1.209 0.64 �1.80 0.70 0.05 �1.95 1.44 �1.24 �1.22 �1.45

27 14.986 0.38 1.168 0.56 �1.49 0.55 0.04 �1.76 1.26 �1.08 �1.06 �1.23

28 15.621 0.15 1.127 0.51 �1.31 0.45 0.03 �1.58 1.09 �0.93 �0.92 �1.07

29 16.256 �0.11 1.087 0.46 �1.17 0.38 0.03 �1.42 0.94 �0.81 �0.79 �0.92

30 16.891 �0.43 1.047 0.40 �0.97 0.30 0.02 �1.27 0.81 �0.69 �0.68 �0.79

31 17.526 �0.77 1.006 0.34 �0.78 0.22 0.01 �1.13 0.69 �0.59 �0.58 �0.68

32 18.161 �1.08 0.966 0.30 �0.66 0.18 0.01 �1.00 0.59 �0.50 �0.49 �0.58

33 18.796 �1.43 0.925 0.27 �0.58 0.15 0.01 �0.86 0.49 �0.42 �0.42 �0.49

34 19.431 �1.87 0.884 0.25 �0.50 0.13 0.01 �0.76 0.41 �0.35 �0.35 �0.40

35 20.066 �2.37 0.843 0.23 �0.43 0.10 0.00 �0.66 0.34 �0.29 �0.29 �0.33

36 20.701 �2.87 0.802 0.22 �0.38 0.09 0.00 �0.57 0.28 �0.24 �0.24 �0.27

37 21.336 �3.31 0.762 0.21 �0.36 0.08 0.00 �0.49 0.23 �0.20 �0.19 �0.22
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